Keyword SMEAR

This keyword specifies a certain kind of fractional occupation at the Fermi level. Note two things. This smearing is not necessarily the same as Fermi-level smearing in other codes. The variational principle may be violated if SMEAR is used.
Options:
$<$Real$>$ Energy range $\Delta E$ [in a.u.] around the HOMO energy in which orbitals are fractionally occupied.
UNIFORM Specifies uniform fractional occupation within $\Delta E$ [in a.u.] around the HOMO level.
Description:
The SMEAR keyword affects only the molecular orbitals within the specified energy interval $[ E_{\rm HOMO} - {\Delta E}/2 \, , \, E_{\rm HOMO} + {\Delta E}/2 ]$. Therefore, the $\Delta E$ value should be selected based on the orbital energy spectrum (see MOS option of PRINT in 4.12.2). The smearing is done by inverse proportionality to the energy interval of a given orbital energy to the reference energy $E_{\rm HOMO} - {\Delta E}/2$. The closer the MO energy is to this reference energy, the larger will its occupation number be set. To enforce uniform occupation of the orbitals within the $\Delta E$ interval, the option UNIFORM should be used. In either case, the converged fractional orbital occupation is used in any further step of the calculation (optimization, frequencies, properties etc.). The use of SMEAR for the symmetry-adapted calculation of the NO doublet is shown in the following example:

 DIIS on
 Guess TB
 Smear 0.1
 Print MOs=7-10
 Geometry Z-Matrix
 N
 O  N  R
 Variables
 R  1.188

In this particular example the energy obtained is variational. The converged $\alpha$ and $\beta$ MO coefficients for orbitals 7 through 10 are:

 ALPHA MO COEFFICIENTS OF CYCLE 10


                               7          8          9         10
                            -.4318     -.1778     -.1778      .1876

                            1.0000      .5000      .5000      .0000

    1    1   N    1s         .1121      .0000      .0000      .0817
    2    1   N    2s        -.2273      .0000      .0000     -.1440
    3    1   N    3s        -.4724      .0000      .0000    -1.5219
    4    1   N    2py        .0000      .0034      .6623      .0000
    5    1   N    2pz        .5063      .0000      .0000     -.3326
    6    1   N    2px        .0000      .6623     -.0034      .0000
    7    1   N    3py        .0000      .0021      .4037      .0000
    8    1   N    3pz        .0927      .0000      .0000    -1.4349
    9    1   N    3px        .0000      .4037     -.0021      .0000
   10    1   N    3d-2       .0000      .0000      .0000      .0000
   11    1   N    3d-1       .0000      .0000     -.0074      .0000
   12    1   N    3d+0       .0323      .0000      .0000      .0304
   13    1   N    3d+1       .0000     -.0074      .0000      .0000
   14    1   N    3d+2       .0000      .0000      .0000      .0000

   15    2   O    1s        -.0259      .0000      .0000      .1201
   16    2   O    2s         .0483      .0000      .0000     -.2451
   17    2   O    3s        -.0984      .0000      .0000     1.5780
   18    2   O    2py        .0000     -.0028     -.5499      .0000
   19    2   O    2pz       -.4739      .0000      .0000     -.2873
   20    2   O    2px        .0000     -.5499      .0028      .0000
   21    2   O    3py        .0000     -.0017     -.3420      .0000
   22    2   O    3pz       -.1745      .0000      .0000     -.9839
   23    2   O    3px        .0000     -.3420      .0017      .0000
   24    2   O    3d-2       .0000      .0000      .0000      .0000
   25    2   O    3d-1       .0000     -.0001     -.0117      .0000
   26    2   O    3d+0       .0195      .0000      .0000     -.0004
   27    2   O    3d+1       .0000     -.0117      .0001      .0000
   28    2   O    3d+2       .0000      .0000      .0000      .0000



 BETA MO COEFFICIENTS OF CYCLE 10


                               7          8          9         10
                            -.4072     -.1391     -.1391      .1995

                            1.0000      .0000      .0000      .0000

    1    1   N    1s        -.1196      .0000      .0000      .0811
    2    1   N    2s         .2374      .0000      .0000     -.1270
    3    1   N    3s         .5017      .0000      .0000    -1.5760
    4    1   N    2py        .0000      .1054      .6454      .0000
    5    1   N    2pz       -.4988      .0000      .0000     -.3042
    6    1   N    2px        .0000      .6454     -.1054      .0000
    7    1   N    3py        .0000      .0714      .4376      .0000
    8    1   N    3pz       -.0992      .0000      .0000    -1.4761
    9    1   N    3px        .0000      .4376     -.0714      .0000
   10    1   N    3d-2       .0000      .0000      .0000      .0000
   11    1   N    3d-1       .0000     -.0008     -.0048      .0000
   12    1   N    3d+0      -.0281      .0000      .0000      .0221
   13    1   N    3d+1       .0000     -.0048      .0008      .0000
   14    1   N    3d+2       .0000      .0000      .0000      .0000

   15    2   O    1s         .0201      .0000      .0000      .1206
   16    2   O    2s        -.0323      .0000      .0000     -.2389
   17    2   O    3s         .0819      .0000      .0000     1.6249
   18    2   O    2py        .0000     -.0849     -.5200      .0000
   19    2   O    2pz        .4565      .0000      .0000     -.2597
   20    2   O    2px        .0000     -.5200      .0849      .0000
   21    2   O    3py        .0000     -.0570     -.3493      .0000
   22    2   O    3pz        .1750      .0000      .0000    -1.0090
   23    2   O    3px        .0000     -.3493      .0570      .0000
   24    2   O    3d-2       .0000      .0000      .0000      .0000
   25    2   O    3d-1       .0000     -.0022     -.0136      .0000
   26    2   O    3d+0      -.0185      .0000      .0000      .0048
   27    2   O    3d+1       .0000     -.0136      .0022      .0000
   28    2   O    3d+2       .0000      .0000      .0000      .0000

Note the symmetry-adapted occupation of the $\alpha$ MOs 8 and 9.