XAS | Request an x-ray absorption spectrum calculation. This is the default. | ||
XES | Request an x-ray emission spectrum calculation. | ||
ALPHA=MO1-MO2 | Specifies molecular orbital range from integer MO1 to MO2 for XES. | ||
BETA=MO1-MO2 | Specifies molecular orbital range from integer MO1 to MO2 for XES. | ||
TOL=Real | Cutoff tolerance for (extended) XAS basis set orthogonalization. Default is . |
MOMODIFY 1 0 1 0.5 PRINT MOS XRAY XAS SCFTYPE UKS VXCTYPE BLYP AUXIS (GEN-A2*) BASIS (IGLO-III) # AUGMENT O (XAS-I) # GEOMETRY Z-MATRIX ANGSTROM O 8 15.999400 H 1 R 1 1.007940 H 1 R 2 A RAD 1 1.007940 # VARIABLES R 0.97344553 A 104.736377
Note the half-core-hole definition with MOMODIFY and the augmentation of the basis set (see 4.3.2) for the XAS calculation. For reliable spectra the augmentation basis is needed at least on the core-excited atom. Otherwise the sampling of the continuum and Rydberg states will be too coarse. The half-core-hole can be verified from the MO printing,
ALPHA MO COEFFICIENTS OF CYCLE 9 1 2 3 4 -19.8771 -1.1772 -0.7189 -0.5834 0.5000 1.0000 1.0000 1.0000 1 1 O 1s 0.1649 -0.0372 0.0000 0.0139 2 1 O 2s 0.3151 -0.0818 0.0000 0.0303 3 1 O 3s 0.4328 -0.1554 0.0000 0.0601 4 1 O 4s 0.2189 -0.0896 0.0000 0.0312 5 1 O 5s 0.0141 0.3718 0.0000 -0.1410 6 1 O 6s -0.0051 0.4611 0.0000 -0.2163 7 1 O 7s -0.0015 0.1289 -0.0001 -0.1647 : : : : : : : : 36 2 H 1s 0.0000 0.0449 0.0688 0.0391 37 2 H 2s 0.0004 0.0876 0.1587 0.0922 38 2 H 3s 0.0019 0.0285 0.1328 0.0830 39 2 H 4s -0.0002 0.0008 0.0120 0.0093 : : : : : : : : 46 3 H 1s 0.0000 0.0449 -0.0688 0.0391 47 3 H 2s 0.0004 0.0876 -0.1587 0.0922 48 3 H 3s 0.0019 0.0285 -0.1327 0.0830 49 3 H 4s -0.0002 0.0008 -0.0119 0.0093 : : : : : : : : ,
after SCF convergence. The XAS output, employing the basis set augmentation, is given in the property output section of deMon.out as:
TRANSITION TRANSITION MOMENTS NO. E[eV] STRENGTH X Y Z 1 536.10 0.0059 0.0167 0.0000 0.0129 2 538.09 0.0132 0.0193 0.0000 -0.0251 3 539.25 0.0016 -0.0087 0.0003 -0.0067 4 539.30 0.0021 0.0002 0.0126 0.0001 5 539.69 0.0007 0.0056 0.0000 0.0044 6 539.99 0.0011 0.0056 0.0000 -0.0073 7 540.22 0.0000 0.0007 0.0000 0.0005 8 540.25 0.0002 0.0002 -0.0038 0.0002 9 540.25 0.0002 0.0032 0.0002 0.0025 10 540.28 0.0003 -0.0003 0.0044 -0.0002 11 540.28 0.0002 0.0030 0.0005 0.0022 12 540.28 0.0001 0.0013 0.0000 -0.0019 13 540.30 0.0000 0.0000 0.0000 0.0000 : : : : : : : : : : : :
The transitions are ordered according to their transition energies. The transition strength [a.u.] is calculated as:
(27) |
CHARGE -1 MOMODIFY 1 0 1 0.0 SCFTYPE UKS VXCTYPE BLYP AUXIS (GEN-A2*) BASIS (IGLO-III) # GEOMETRY Z-MATRIX ANGSTROM O 8 15.999400 H 1 R 1 1.007940 H 1 R 2 A RAD 1 1.007940 # VARIABLES R 0.97344553 A 104.736377
This yields the following MO occupations after SCF convergence:
ALPHA MO COEFFICIENTS OF CYCLE 9 1 2 ... 6 7 -20.1462 -1.1230 ... -0.1018 -0.0396 0.0000 1.0000 ... 1.0000 0.0000 1 1 O 1s 0.1660 -0.0396 ... -0.0143 0.0000 2 1 O 2s 0.3174 -0.0866 ... -0.0320 0.0000 3 1 O 3s 0.4291 -0.1699 ... -0.0616 0.0000 4 1 O 4s 0.2214 -0.0798 ... -0.0349 0.0000 5 1 O 5s 0.0102 0.4080 ... 0.1954 0.0000 6 1 O 6s -0.0020 0.4585 ... 0.1882 -0.0001 7 1 O 7s 0.0000 0.1112 ... 0.9772 0.0000 : : : : : : : : : 36 2 H 1s 0.0000 0.0422 ... -0.0339 0.0388 37 2 H 2s 0.0001 0.0807 ... -0.1164 0.1102 38 2 H 3s 0.0003 0.0281 ... -0.3905 0.2107 39 2 H 4s -0.0001 0.0006 ... -0.6048 1.3031 : : : : : : : : : 46 3 H 1s 0.0000 0.0422 ... -0.0339 -0.0388 47 3 H 2s 0.0001 0.0807 ... -0.1164 -0.1102 48 3 H 3s 0.0003 0.0281 ... -0.3903 -0.2108 49 3 H 4s -0.0001 0.0006 ... -0.6053 -1.3029 : : : : : : : : :
The energy difference between this first excited core-state and the ground state is used to shift the origin of the transition potential spectrum, i.e. the first excitation of the above TRANSITION output. A further correction can be introduced by calculating the core ionization potential, here of the O orbital in water, and compare with results from experimental x-ray photoelectron spectra (XPS). This offset also corrects for deficiencies in the functional [252,253]. The input for the XPS calculation has the form:
MOMODIFY 1 0 1 0.0 SCFTYPE UKS VXCTYPE BLYP AUXIS (GEN-A2*) BASIS (IGLO-III) # GEOMETRY Z-MATRIX ANGSTROM O 8 15.999400 H 1 R 1 1.007940 H 1 R 2 A RAD 1 1.007940 # VARIABLES R 0.97344553 A 104.736377
If core-levels are close in energy, like in a water cluster, ECPs (see 4.3.4) can be used to have the relevant core-level uniquely defined. The following shows a water pentamer input for an XAS calculation using this technique:
MOMODIFY 1 0 1 0.5 XRAY XAS BASIS (TZVP) O1 (IGLO-III) O2 (RECP6|SD) SCFTYPE UKS MAX=20 TOL=0.100E-04 VXCTYPE PBE AUGMENTATION O1 (XAS-I) ERIS DIRECT TOL=1.0E-8 # # Pentamer geometry # GEOMETRY CARTESIAN ANGSTROM O1 0.000000 0.000000 0.000000 O2 2.264218 1.270427 -1.048492 O2 -0.236014 0.380416 2.763979 O2 -2.323588 1.242303 -0.947429 O2 -0.113699 -2.602651 -1.026294 H -0.081064 -1.025238 -0.277800 H -0.036255 0.134954 1.127393 H -0.909319 -3.125997 -0.746222 H 0.695861 -3.190749 -0.803055 H 0.617200 0.800843 3.188623 H -0.994919 0.919704 3.110267 H -3.037164 0.667781 -0.585638 H -1.475886 0.786984 -0.720841 H 1.514773 0.710601 -0.705452 H 3.110268 0.796835 -0.730599
The isolated core-level of O1 can be easily identified (first MO) in the corresponding MO output:
ALPHA MO COEFFICIENTS OF CYCLE 10 1 2 3 4 ... -19.7860 -1.0776 -1.0646 -1.0562 ... 0.5000 1.0000 1.0000 1.0000 ... 1 1 O 1s 0.1647 -0.0327 0.0133 0.0133 ... 2 1 O 2s 0.3162 -0.0718 0.0293 0.0292 ... 3 1 O 3s 0.4323 -0.1375 0.0560 0.0558 ... 4 1 O 4s 0.2183 -0.0774 0.0319 0.0319 ... 5 1 O 5s 0.0146 0.3176 -0.1315 -0.1317 ... 6 1 O 6s -0.0061 0.4356 -0.1739 -0.1716 ... 7 1 O 7s 0.0065 0.0788 -0.0343 -0.0351 ... : : : : : : : : : : : : : : : : : :
With the XES option the calculation of x-ray emission spectra is requested. The core levels are specified with the ALPHA and BETA options of the XRAY keyword. Since the ground state is used we can compute spectra for all relevant core-levels in one calculation so a range of orbitals is specified. This range can include only one orbital as shown in the following input example for the first MO XES of water:
SCFTYPE UKS VXCTYPE PBE BASIS XRAY XES ALPHA=1-1 BASIS (IGLO-III) H Read 1 0 3 14.9588900000 0.0349460000 2.2563909000 0.2347270000 0.5112084000 0.8137573000 2 0 1 0.1219492000 1.0000000000 3 0 1 0.0360000000 1.0000000000 2 1 1 1.1000000000 1.0000000000 AUXIS (GEN-A4*) # GEOMETRY CARTESIAN ANGSTROM O 0.00000000 0.00000000 0.20476407 H 0.66694680 0.00000000 -0.39124903 H -0.66694680 0.00000000 -0.39124903
Here the relevant O 1s level is the lowest in energy, but this depends on the system. The specification is by way of orbital number so that in more complicated cases a ground state calculation should be done first to find the relevant orbital(s). The corresponding XES output is given in the property output section of deMon.out and reads for this example as:
XES CALCULATION FOR MO #: 1 IONIZATION POTENTIAL = 510.08 EV TRANSITION TRANSITION MOMENTS NO. E[eV] STRENGTH X Y Z 2 483.78 0.4311 0.0000 0.0000 -0.0152 3 496.73 5.3353 0.0513 0.0000 0.0000 4 500.29 5.5736 0.0000 0.0000 0.0519 5 502.75 7.2973 0.0000 0.0589 0.0000
This information is also written to the file deMon.xry for further processing with the utility program xray2k. The emission energies are obtained from orbital energy differences and lack effects of relaxation (most important for the inner-shell). An improved absolute energy can be obtained by computing the difference between the IP for the core and for the HOMO and use that to place the transition with highest energy. This assumes that relaxation effects in the valence are similar, which is not necessarily the case [254].