DYNAMICS STEP=0.5 MAX=200 INT=1 CONSTRAINTS 1 3 1 2 7 1 3 7 8 PRINT CONSTRAINTS BATH NOSE NHC=3 T=300 VELOCITIES RANDOM LP=0 LPCONSERVE FORCES VISUALIZE MOLDEN MD # GEOMETRY CARTESIAN ANGSTROMS C 0.000000 0.000000 0.000000 H1 0.000000 0.000000 1.092841 H2 1.033412 0.000000 -0.357505 H3 -0.517308 0.895483 -0.357014 H4 -0.518495 -0.891704 -0.361515 H 0.521017 0.588124 -2.579748 O 0.928735 0.380831 -3.434937 H 0.920449 -0.588239 -3.473172
As this example shows, each constraint is defined by a set of integer numbers in a line of the CONSTRAINTS keyword body. Alternatively, it is possible to constrain an entire set of atoms as shown in the following example.
DYNAMICS STEP=0.5 MAX=200 INT=1 CONSTRAINTS 1 - 5 PRINT CONSTRAINTS BATH NOSE NHC=3 T=300 VELOCITIES RANDOM LP=0 LPCONSERVE FORCES VISUALIZE MOLDEN MD # GEOMETRY CARTESIAN ANGSTROMS C 0.000000 0.000000 0.000000 H1 0.000000 0.000000 1.092841 H2 1.033412 0.000000 -0.357505 H3 -0.517308 0.895483 -0.357014 H4 -0.518495 -0.891704 -0.361515 H 0.521017 0.588124 -2.579748 O 0.928735 0.380831 -3.434937 H 0.920449 -0.588239 -3.473172
Here the first five atoms (the CH molecule) are constrained during the BOMD simulation. Note that dummy atoms must be taken into account for the atom numbering in constraints as the following example shows.
DYNAMICS STEP=1.0 MAX=100 R=6.0 INT=1 PRINT CONSTRAINTS BASIS C (STO-3G) H (DZVP) N (STO-3G) AUXIS C (A2) H (A2) N (GEN-A2) MULTIPLICITY 1 VXCTYPE PBE TRAJECTORY RESTART BATH NOSE T=500 NHC=3 FREQ=200 VELOCITIES RANDOM LP=0 T=500 LPCONSERVE ON GUESS RESTART VISUALIZATION MOLDEN MD # # Z-Matrix coordinates of MD step 100 # GEOMETRY Z-MATRIX BOHR C 6 12.011000 H 1 RCH 1 1.007940 X 1 RCX 2 A1 RAD 0 0.000000 N 1 RCN 3 A2 2 DX1 RAD 7 14.006740 # VARIABLES RCH 2.06518100 RCX 1.89096462 RCN 2.27049634 A1 89.538122 A2 89.876160 DX1 163.715357 # CONSTRAINTS 1 2 1 4
In this input the C-H and CN bond lengths in HCN are fixed during the BOMD. The CONSTRAINTS keyword can also be used for MM MD simulations. The following example shows an MM MD input for (HO) in which the first water molecule is kept frozen.
LPCONSERVE CONSTRAINTS 1 - 3 VISUALIZATION MD PRINT CONSTRAINTS DISPERSION S6=1.0 BATH NOSE NHC=3 T=300 VELOCITIES RANDOM LP=0 FORCEFIELD FF=OPLS-AA DYNAMICS STEP=0.5 MAX=1000 INT=1 # GEOMETRY MIXED ANGSTROM O1 1.187632 0.332759 -1.195914 -76 2 3 H2 0.217713 0.505507 -1.369657 -77 1 H3 1.503324 -0.129952 -1.999029 -77 1 O4 -1.628323 0.600651 -1.413703 -76 H5 -1.885969 0.153697 -0.557057 -77 H6 -2.021673 1.495719 -1.360149 -77 O7 0.867185 -1.043515 1.275905 -76 8 9 H8 1.124357 -0.596134 0.419304 -77 7 H9 1.262389 -1.937796 1.222724 -77 7 O10 O7 R1 O4 A1 O1 D1 -76 11 12 H11 O10 R2 O4 A2 O1 D2 -77 10 H12 O10 R3 H11 A3 O7 D3 -77 10 # Variables R1 3.0 R2 1.0 R3 1.0 A1 90.0 A2 10.0 A3 99.0 D1 0.0 D2 45.0 D3 90.0
The extension of the CONSTRAINTS keyword to QM/MM molecular dynamics is straightforward. It can be applied to QM and MM atoms simultaneously.